목록LeetCode (6)
kohigowild

Count Largest Group You are given an integer n. Each number from 1 to n is grouped according to the sum of its digits. Return the number of groups that have the largest size. Example 1: Input: n = 13 Output: 4 Explanation: There are 9 groups in total, they are grouped according sum of its digits of numbers from 1 to 13: [1,10], [2,11], [3,12], [4,13], [5], [6], [7], [8], [9]. There are 4 groups ..

Reverse Vowels of a String Given a string s, reverse only all the vowels in the string and return it. The vowels are 'a', 'e', 'i', 'o', and 'u', and they can appear in both lower and upper cases, more than once. Example 1: Input: s = "hello" Output: "holle" Example 2: Input: s = "leetcode" Output: "leotcede" Constraints: 1

Apply Operations to an Array You are given a 0-indexed array nums of size n consisting of non-negative integers. You need to apply n - 1 operations to this array where, in the ith operation (0-indexed), you will apply the following on the ith element of nums: If nums[i] == nums[i + 1], then multiply nums[i] by 2 and set nums[i + 1] to 0. Otherwise, you skip this operation. After performing all t..

Minimum Difference Between Highest and Lowest of K Scores You are given a 0-indexed integer array nums, where nums[i] represents the score of the ith student. You are also given an integer k. Pick the scores of any k students from the array so that the difference between the highest and the lowest of the k scores is minimized. Return the minimum possible difference. Example 1: Input: nums = [90]..

Best Time to Buy and Sell Stock You are given an array prices where prices[i] is the price of a given stock on the ith day. You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock. Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0. Example 1: Input: prices = ..

Shift 2D Grid Given a 2D grid of size m x n and an integer k. You need to shift the grid k times. In one shift operation: Element at grid[i][j] moves to grid[i][j + 1]. Element at grid[i][n - 1] moves to grid[i + 1][0]. Element at grid[m - 1][n - 1] moves to grid[0][0]. Return the 2D grid after applying shift operation k times. Example 1: Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1 Output: [[..